メインコンテンツまでスキップ

Two Body Relativistic Kinematics

Calculation

m1(m2,m3)m4m_1(m_2, m_3)m_4 を考える.

メトリックは,

(1111)\mqty( \dmat{ 1, -1, -1, -1 } )

重心系の速度を βG\beta_G とすると, Lorentz Boost によって, 次のように変換される.

(γGβGγGβGγGγG)(E1(lab)p1(lab))\mqty( \gamma_G & - \beta_G \gamma_G \\ - \beta_G \gamma_G & \gamma_G ) \mqty( E_1^\mathrm{(lab)} \\ p_1^\mathrm{(lab)} ) (γGβGγGβGγGγG)(E2(lab)p2(lab))\mqty( \gamma_G & - \beta_G \gamma_G \\ - \beta_G \gamma_G & \gamma_G ) \mqty( E_2^\mathrm{(lab)} \\ p_2^\mathrm{(lab)} )

ところで, β\beta, γ\gamma

γ2β2γ2=1\gamma^2 - \beta^2\gamma^2 = 1

を満たすので, この変換は

coshχ=γ,sinhχ=βγ.\cosh \chi = \gamma,\quad \sinh \chi = \beta \gamma.

として,

(coshχsinhχsinhχcoshχ)\mqty( \cosh \chi & - \sinh \chi \\ - \sinh \chi & \cosh \chi )

とも表せる. SkiSicknessの説明では, これが使われている.

重心系では, p1(CM)+p2(CM)=0p_1^\mathrm{(CM)} + p_2^\mathrm{(CM)} = 0 より,

βG=p1(lab)+p2(lab)E1(lab)+E2(lab),γG=11βG2.\beta_G = \frac{ p_1^\mathrm{(lab)} + p_2^\mathrm{(lab)} }{ E_1^\mathrm{(lab)} + E_2^\mathrm{(lab)} }, \quad \gamma_G = \frac{1}{\sqrt{1-\beta_G^2}} .

Mandelstam 変数 ss (重心系のエネルギーに相当) はローレンツ不変で,

s=(p1+p2)2=(E1+E2)2(p1+p2)2s = (p_1 + p_2)^2 = (E_1 + E_2)^2 - (p_1 + p_2)^2

実験室系で入射粒子2の運動エネルギーを TT, 標的粒子1が静止しているとすると,

s=(m1+m2+T)2p2(lab)2=(m1+m2+T)2((m2+T)2m22)=(m1+m2)2+2m1Ts = (m_1 + m_2 + T)^2 - p_2^{\mathrm{(lab)}2} = (m_1 + m_2 + T)^2 - \qty( (m_2 + T)^2 - m_2^2 ) = (m_1 + m_2)^2 + 2m_1T

ss は, ローレンツ不変なので,

s=(E1(CM)+E2(CM))2(p1(CM)+p2(CM))2=(m12+p1(CM)2+m22+p1(CM)2)2s = \qty( E_1^\mathrm{(CM)} + E_2^\mathrm{(CM)} )^2 - \qty(p_1^\mathrm{(CM)} + p_2^\mathrm{(CM)})^2 = \qty( \sqrt{ m_1^2 + p_1^{\mathrm{(CM)}2} } + \sqrt{ m_2^2 + p_1^{\mathrm{(CM)}2} } )^2

これを変形して,

2m12+p1(CM)2m22+p1(CM)2=m12+m22+2p1(CM)2s2 \sqrt{ m_1^2 + p_1^{\mathrm{(CM)}2} } \sqrt{ m_2^2 + p_1^{\mathrm{(CM)}2} } = m_1^2 + m_2^2 + 2 p_1^{\mathrm{(CM)}2} -s 4m12m22+4(m12+m22)p1(CM)2+4p1(CM)4=(m12+m22)2+4(m12+m22)p1(CM)2+4p1(CM)4+s22s(m12+m22+2p1(CM)2)4 m_1^2m_2^2 + 4 (m_1^2 + m_2^2) p_1^{\mathrm{(CM)}2} + 4 p_1^{\mathrm{(CM)}4} = (m_1^2 + m_2^2)^2 + 4 (m_1^2 + m_2^2) p_1^{\mathrm{(CM)}2} + 4 p_1^{\mathrm{(CM)}4} + s^2 - 2 s \qty( m_1^2 + m_2^2 + 2 p_1^{\mathrm{(CM)}2}) 4m12m22=(m12+m22)2+s22s(m12+m22+2p1(CM)2)4 m_1^2m_2^2 = (m_1^2 + m_2^2)^2 + s^2 - 2 s \qty( m_1^2 + m_2^2 + 2 p_1^{\mathrm{(CM)}2}) m14+m242m12m22+s22s(m12+m22+2p1(CM)2)=0m_1^4 + m_2^4 - 2m_1^2m_2^2 + s^2 - 2 s \qty( m_1^2 + m_2^2 + 2 p_1^{\mathrm{(CM)}2}) = 0 4sp1(CM)2+2(m12+m22)2s2(m12m22)2=04 s p_1^{\mathrm{(CM)}2} + 2 (m_1^2 + m_2^2)^2 - s^2 - (m_1^2 - m_2^2)^2 = 0 p1(CM)2=(m12m22)2+s22s(m12+m22)4s={s(m12+m22)2}24m12m224s\begin{align*} p_1^{\mathrm{(CM)}2} &= \frac{ (m_1^2 - m_2^2)^2 + s^2 -2s (m_1^2 + m_2^2) }{ 4s }\\ &= \frac{ \qty{ s - \qty(m_1^2 + m_2^2)^2 }^2 - 4 m_1^2 m_2^2 }{ 4s } \end{align*} p1(CM)={s(m12+m22)2}24m12m224sp_1^{\mathrm{(CM)}} = \sqrt{ \frac{ \qty{ s - \qty(m_1^2 + m_2^2)^2 }^2 - 4 m_1^2 m_2^2 }{ 4s } }

を得る.

E1(CM)=m1γG=m1coshχ=m12+p1(CM)2E_1^{\mathrm{(CM)}} = m_1 \gamma_G = m_1 \cosh \chi = \sqrt{m_1^2 + p_1^{\mathrm{(CM)}2} } p1(CM)=m1βGγG=m1sinhχ=p1(CM)p_1^{\mathrm{(CM)}} = m_1 \beta_G \gamma_G = m_1 \sinh \chi = p_1^{\mathrm{(CM)}}

より,

coshχ=m12+p1(CM)2m1,sinhχ=p1(CM)m1.\cosh \chi = \frac{\sqrt{m_1^2 + p_1^{\mathrm{(CM)}2}}}{m_1}, \quad \sinh \chi = \frac{p_1^{\mathrm{(CM)}}}{m_1}.

また, sinhχ+coshχ=expχ\sinh \chi + \cosh \chi = \exp \chi より, χ\chi

χ=ln(p1(CM)+m12+p1(CM)2m1)\chi = \ln\qty( \frac{ p_1^{\mathrm{(CM)}} + \sqrt{m_1^2 + p_1^{\mathrm{(CM)}2}} }{m_1} )

と表せる.

ss は保存され, 重心系では p3(CM)+p4(CM)=0p_3^{\mathrm{(CM)}} + p_4^{\mathrm{(CM)}} = 0 より,

s=(E3(CM)+E4(CM))2=(m32+p3(CM)2+m42+p4(CM)2)2\begin{align*} s &= \qty(E_3^{\mathrm{(CM)}} + E_4^{\mathrm{(CM)}})^2 \\ &= \qty( \sqrt{ m_3^2 + p_3^{\mathrm{(CM)}2} } + \sqrt{ m_4^2 + p_4^{\mathrm{(CM)}2} } )^2 \end{align*}

上と同じようにして,

p3(CM)={s(m32+m42)2}24m32m424sp_3^{\mathrm{(CM)}} = \sqrt{ \frac{ \qty{ s - \qty(m_3^2 + m_4^2)^2 }^2 - 4 m_3^2 m_4^2 }{ 4s } }

を得る.

したがって, 重心系での粒子3,4のエネルギー E3(CM)E_3^{\mathrm{(CM)}}, E4(CM)E_4^{\mathrm{(CM)}}

E3(CM)2=m32+p3(CM)2=m32+{s(m32+m42)2}24m32m424s={s+(m32m42)2}24s\begin{align*} E_3^{\mathrm{(CM)}2} &= m_3^2 + p_3^{\mathrm{(CM)}2}\\ &= m_3^2 + \frac{ \qty{s - \qty(m_3^2 + m_4^2)^2}^2- 4 m_3^2 m_4^2 }{4s}\\ &= \frac{ \qty{s + \qty(m_3^2 - m_4^2)^2}^2 }{ 4s } \end{align*} E3(CM)=s+(m32m42)22sE_3^{\mathrm{(CM)}} = \frac{ s + \qty(m_3^2 - m_4^2)^2 }{ 2 \sqrt{s} }

E3(CM)+E4(CM)=sE_3^{\mathrm{(CM)}} + E_4^{\mathrm{(CM)}} = \sqrt{s} より,

E4(CM)=s(m32m42)22sE_4^{\mathrm{(CM)}} = \frac{ s - \qty(m_3^2 - m_4^2)^2 }{ 2 \sqrt{s} }

重心系での粒子3,4の4元運動量:

(E3(CM)p3(CM)),(E4(CM)p3(CM)).\mqty( E_3^{\mathrm{(CM)}} \\ p_3^{\mathrm{(CM)}} ), \quad \mqty( E_4^{\mathrm{(CM)}} \\ - p_3^{\mathrm{(CM)}} ).

をローレンツ逆変換して, 実験室系に戻す.

(γGβGγGβGγGγG)(E3(CM)p3(CM)cosθ(CM))=(γGE3(CM)+βGγGp3(CM)cosθ(CM)βGγGE3(CM)+γGp3(CM)cosθ(CM))=(E3(lab)p3(lab)cosθ3(lab))\mqty( \gamma_G & \beta_G \gamma_G \\ \beta_G \gamma_G & \gamma_G ) \mqty( E_3^{\mathrm{(CM)}} \\ p_3^{\mathrm{(CM)}} \cos \theta^{\mathrm{(CM)}} ) = \mqty( \gamma_G E_3^{\mathrm{(CM)}} + \beta_G \gamma_G p_3^{\mathrm{(CM)}} \cos \theta^{\mathrm{(CM)}} \\ \beta_G \gamma_G E_3^{\mathrm{(CM)}} + \gamma_G p_3^{\mathrm{(CM)}} \cos \theta^{\mathrm{(CM)}} ) = \mqty( E_3^{\mathrm{(lab)}} \\ p_3^{\mathrm{(lab)}} \cos \theta_3^{\mathrm{(lab)}} ) (γGβGγGβGγGγG)(E4(CM)p3(CM)cosθ3(CM))=(γGE4(CM)βGγGp3(CM)cosθ(CM)βGγGE4(CM)γGp3(CM)cosθ(CM))=(E4(lab)p4(lab)cosθ4(lab))\mqty( \gamma_G & \beta_G \gamma_G \\ \beta_G \gamma_G & \gamma_G ) \mqty( E_4^{\mathrm{(CM)}} \\ - p_3^{\mathrm{(CM)}} \cos \theta_3^{\mathrm{(CM)}} ) = \mqty( \gamma_G E_4^{\mathrm{(CM)}} - \beta_G \gamma_G p_3^{\mathrm{(CM)}} \cos \theta^{\mathrm{(CM)}} \\ \beta_G \gamma_G E_4^{\mathrm{(CM)}} - \gamma_G p_3^{\mathrm{(CM)}} \cos \theta^{\mathrm{(CM)}} ) = \mqty( E_4^{\mathrm{(lab)}} \\ p_4^{\mathrm{(lab)}} \cos \theta_4^{\mathrm{(lab)}} )

垂直な成分は変わらないので,

p3(CM)sinθ(CM)=p3(lab)sinθ3(lab)p4(CM)sinθ(CM)=p4(lab)sinθ4(lab)\begin{align*} p_3^{\mathrm{(CM)}} \sin \theta^{\mathrm{(CM)}} &= p_3^{\mathrm{(lab)}} \sin \theta_3^{\mathrm{(lab)}} \\ p_4^{\mathrm{(CM)}} \sin \theta^{\mathrm{(CM)}} &= p_4^{\mathrm{(lab)}} \sin \theta_4^{\mathrm{(lab)}} \\ \end{align*}

以上より, 実験室系での運動エネルギーは,

T3(lab)=E3(lab)m3,T4(lab)=E4(lab)m4.T_3^{\mathrm{(lab)}} = E_3^{\mathrm{(lab)}} - m_3, \quad T_4^{\mathrm{(lab)}} = E_4^{\mathrm{(lab)}} - m_4.

実験室系での運動量は,

p3(lab)2=(p3(lab)sinθ3(lab))2+(p3(lab)cosθ3(lab))2,p4(lab)2=(p4(lab)sinθ4(lab))2+(p4(lab)cosθ4(lab))2.\begin{align*} p_3^{\mathrm{(lab)}2} &= \qty( p_3^{\mathrm{(lab)}} \sin \theta_3^{\mathrm{(lab)}} )^2 + \qty( p_3^{\mathrm{(lab)}} \cos \theta_3^{\mathrm{(lab)}} )^2 ,\\ p_4^{\mathrm{(lab)}2} &= \qty( p_4^{\mathrm{(lab)}} \sin \theta_4^{\mathrm{(lab)}} )^2 + \qty( p_4^{\mathrm{(lab)}} \cos \theta_4^{\mathrm{(lab)}} )^2 . \end{align*}

実験室系での角度は,

θ3(lab)=arctan(p3(lab)sinθ3(lab)p3(lab)cosθ3(lab))=arctan(p3(CM)sinθ3(CM)βGγGE3(CM)+γGp3(CM)cosθ(CM))θ4(lab)=arctan(p4(lab)sinθ4(lab)p4(lab)cosθ4(lab))=arctan(p3(CM)sinθ3(CM)βGγGE4(CM)γGp3(CM)cosθ(CM))\begin{align*} \theta_3^{\mathrm{(lab)}} &= \arctan\qty( \frac{ p_3^{\mathrm{(lab)}} \sin \theta_3^{\mathrm{(lab)}} }{ p_3^{\mathrm{(lab)}} \cos \theta_3^{\mathrm{(lab)}} } ) = \arctan\qty( \frac{ p_3^{\mathrm{(CM)}} \sin \theta_3^{\mathrm{(CM)}} }{ \beta_G \gamma_G E_3^{\mathrm{(CM)}} + \gamma_G p_3^{\mathrm{(CM)}} \cos \theta^{\mathrm{(CM)}} } ) \\ \theta_4^{\mathrm{(lab)}} &= \arctan\qty( \frac{ p_4^{\mathrm{(lab)}} \sin \theta_4^{\mathrm{(lab)}} }{ p_4^{\mathrm{(lab)}} \cos \theta_4^{\mathrm{(lab)}} } ) = \arctan\qty( \frac{ p_3^{\mathrm{(CM)}} \sin \theta_3^{\mathrm{(CM)}} }{ \beta_G \gamma_G E_4^{\mathrm{(CM)}} - \gamma_G p_3^{\mathrm{(CM)}} \cos \theta^{\mathrm{(CM)}} } ) \end{align*}

となる.

tanθ3(lab)=p3(lab)sinθ3(lab)p3(lab)cosθ3(lab)=p3(CM)sinθ3(CM)γp3(CM)cosθ3(CM)+βγE3(CM)\tan \theta_3^{\mathrm{(lab)}} = \frac{ p_3^{\mathrm{(lab)}} \sin \theta_3^{\mathrm{(lab)}} }{ p_3^{\mathrm{(lab)}} \cos \theta_3^{\mathrm{(lab)}} } = \frac{ p_3^{\mathrm{(CM)}} \sin \theta_3^{\mathrm{(CM)}} }{ \gamma p_3^{\mathrm{(CM)}} \cos \theta_3^{\mathrm{(CM)}} + \beta \gamma E_3^{\mathrm{(CM)}} } γtanθ3(lab)cosθ3(CM)sinθ3(CM)=βγE3(CM)tanθ3(lab)p3(CM)\gamma \tan \theta_3^{\mathrm{(lab)}} \cos \theta_3^{\mathrm{(CM)}} - \sin \theta_3^{\mathrm{(CM)}} = - \frac{ \beta \gamma E_3^{\mathrm{(CM)}} \tan \theta_3^{\mathrm{(lab)}} }{ p_3^{\mathrm{(CM)}} } cos(θ3(CM)+α)=βγE3(CM)tanθ3(lab)p3(CM)γ2tan2θ3(lab)+1\cos \qty( \theta_3^{\mathrm{(CM)}} + \alpha) = - \frac{ \beta \gamma E_3^{\mathrm{(CM)}} \tan \theta_3^{\mathrm{(lab)}} }{ p_3^{\mathrm{(CM)}} \sqrt{ \gamma^2 \tan^2 \theta_3^{\mathrm{(lab)}} + 1 } } tanα=1γtanθ3(lab)(0<α<π/2)\tan \alpha = \frac{1}{\gamma \tan \theta_3^{\mathrm{(lab)}}} \quad (0 < \alpha < \pi/2) θ3(CM)+α=arccos(βγE3(CM)tanθ3(lab)p3(CM)γ2tan2θ3(lab)+1)\theta_3^{\mathrm{(CM)}} + \alpha = \arccos\qty( - \frac{ \beta \gamma E_3^{\mathrm{(CM)}} \tan \theta_3^{\mathrm{(lab)}} }{ p_3^{\mathrm{(CM)}} \sqrt{ \gamma^2 \tan^2 \theta_3^{\mathrm{(lab)}} + 1 } } )

Program

Python で計算するスクリプトを書いてみた.

relkin.py
import numpy as np

class kinema():
def __init__(self, m1, m2, m3, m4, num=1000):
self.m1 = m1
self.m2 = m2
self.m3 = m3
self.m4 = m4
self.theta_cm = np.linspace(1e-5, np.pi-1e-5, num)
self.p_cm = 0.0
self.T3_cm = 0.0
self.T4_cm = 0.0
self.theta3_lab = np.zeros(num)
self.theta4_lab = np.zeros(num)
self.T3_lab = np.zeros(num)
self.T4_lab = np.zeros(num)
self.p3_lab = np.zeros(num)
self.p4_lab = np.zeros(num)
self.beta3_lab = np.zeros(num)
self.beta4_lab = np.zeros(num)

def calc(self, T):
m1 = self.m1
m2 = self.m2
m3 = self.m3
m4 = self.m4
theta_cm = self.theta_cm

sq = lambda x : np.power(x,2)

# mandelstam variable s
s = sq(m1 + m2) + 2*m1*T
# Momentum in the CM
pcm12 = np.sqrt( (sq(s - sq(m1) - sq(m2)) - 4*sq(m1)*sq(m2)) / (4*s) )
gamma = np.sqrt(sq(m1) + sq(pcm12)) / m1 # coshX
beta_gamma = pcm12 / m1 # sinhX

# Energy of particles 3 & 4 in CM
E3_cm = ( s + (sq(m3) - sq(m4)) ) / (2 * np.sqrt(s))
E4_cm = ( s - (sq(m3) - sq(m4)) ) / (2 * np.sqrt(s))

# Kinetic energy of particles 3 & 4 in CM
self.T3_cm = E3_cm - m3
self.T4_cm = E4_cm - m4

# Momentum in the CM
self.p_cm = np.sqrt( (sq(s - sq(m3) - sq(m4)) - 4*sq(m3)*sq(m4)) / (4*s) )
p_cm = self.p_cm

# Energy of particles 3 & 4 in Lab
E3_lab = gamma * E3_cm + beta_gamma * p_cm * np.cos(theta_cm)
E4_lab = gamma * E4_cm - beta_gamma * p_cm * np.cos(theta_cm)

# Kinetic energy of particles 3 & 4 in Lab
self.T3_lab = E3_lab - m3
self.T4_lab = E4_lab - m4

# Momentum in Lab
p3cos = gamma * p_cm * np.cos(theta_cm) + E3_cm * beta_gamma
p4cos = - gamma * p_cm * np.cos(theta_cm) + E4_cm * beta_gamma
p3sin = p_cm * np.sin(theta_cm)
p4sin = p_cm * np.sin(theta_cm)
self.p3_lab = np.sqrt(sq(p3cos) + sq(p3sin))
self.p4_lab = np.sqrt(sq(p4cos) + sq(p4sin))

# Beta in Lab
gamma3_lab = E3_lab/m3
gamma4_lab = E4_lab/m4
self.beta3_lab = np.sqrt( (sq(gamma3_lab) - 1)/sq(gamma3_lab) )
self.beta4_lab = np.sqrt( (sq(gamma4_lab) - 1)/sq(gamma4_lab) )

# Theta in Lab
self.theta3_lab = np.arctan(p3sin/p3cos)
self.theta4_lab = np.arctan(p4sin/p4cos)

Example

Proton Elastic Scattering from 136Xe

p(136Xe, 136Xe)p (@ 200 & 300 MeV/u) の反跳陽子の実験室系での運動学をプロットする. ついでに 136Xe の第一励起状態の運動学もプロットする.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from relkin import kinema

u = 931.49410372

mass = (
938.27208943, # MeV
135.907214484 * u, # MeV
135.907214484 * u, # MeV
938.27208943 # MeV
)
xe200 = kinema(*mass)
xe300 = kinema(*mass)

mass_ex = (
938.27208943, # MeV
135.907214484 * u, # MeV
135.907214484 * u + 1.313, # MeV
938.27208943 # MeV
)

xe200_ex = kinema(*mass_ex)
xe300_ex = kinema(*mass_ex)

xe200.calc(200*136)
xe300.calc(300*136)
xe200_ex.calc(200*136)
xe300_ex.calc(300*136)

plt.figure(0, figsize=(8,8), dpi=600)

plt.plot(
np.rad2deg(xe200.theta4_lab),
xe200.T4_lab,
color="teal",
label="Elastic",
lw=2)

plt.plot(
np.rad2deg(xe200_ex.theta4_lab),
xe200_ex.T4_lab,
color="navy",
label="1st Excited",
lw=2)

plt.plot(
np.rad2deg(xe300.theta4_lab),
xe300.T4_lab,
color="darkorange",
label="Elastic",
lw=2)

plt.plot(
np.rad2deg(xe300_ex.theta4_lab),
xe300_ex.T4_lab,
color="maroon",
label="1st Excited",
lw=2)

plt.legend()
plt.xlim(60,90)
plt.ylim(0,120)

Cluster Knockout Reaction

(p,2p), (p,pX)の素過程, p, d, t, 3He, α\alpha と p の弾性散乱の運動学をプロットする.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from relkin import kinema

# Mass
u = 931.49410372 # MeV
# Z = 1
mp = 1.00782503223 * u
md = 2.01410177812 * u
mt = 3.01604927790 * u
# Z = 2
m3He = 3.01602932007 * u
ma = 4.001506179127 * u

m_p2p = (mp,mp,mp,mp)
m_ppd = (mp,md,md,mp)
m_ppt = (mp,mt,mt,mp)
m_pp3He = (mp,m3He,m3He,mp)
m_ppa = (mp,ma,ma,mp)

kinema_p2p = kinema(*m_p2p)
kinema_ppd = kinema(*m_ppd)
kinema_ppt = kinema(*m_ppt)
kinema_pp3He = kinema(*m_pp3He)
kinema_ppa = kinema(*m_ppa)

kinema_p2p.calc(250)
kinema_ppd.calc(250*2)
kinema_ppt.calc(250*3)
kinema_pp3He.calc(250*3)
kinema_ppa.calc(250*4)

plt.figure(0, figsize=(8,8), dpi=600)

## (p,p2p)
# p
plt.plot(
np.rad2deg(kinema_p2p.theta4_lab),
kinema_p2p.T4_lab/1,
color="teal",
label=r"(p, 2p)",
lw=2)


## (p,pd)
# d
plt.plot(
np.rad2deg(kinema_ppd.theta3_lab),
kinema_ppd.T3_lab/2,
color="royalblue",
label=r"(p, pd)",
lw=2)
# p
plt.plot(
np.rad2deg(kinema_ppd.theta4_lab),
kinema_ppd.T4_lab,
color="royalblue",
ls='-.',
lw=2)


## (p,pt)
# t
plt.plot(
np.rad2deg(kinema_ppt.theta3_lab),
kinema_ppt.T3_lab/3,
color="indigo",
label=r"(p, pt)",
lw=2)
# p
plt.plot(
np.rad2deg(kinema_ppt.theta4_lab),
kinema_ppt.T4_lab,
color="indigo",
ls='-.',
lw=2)


## (p,p3He)
# 3He
plt.plot(
np.rad2deg(kinema_pp3He.theta3_lab),
kinema_pp3He.T3_lab/3,
color="darkorange",
label=r"(p, p$^{3}$He)",
lw=2)
# p
plt.plot(
np.rad2deg(kinema_ppt.theta4_lab),
kinema_ppt.T4_lab,
color="darkorange",
ls='-.',
lw=2)


## (p,pa)
# a
plt.plot(
np.rad2deg(kinema_ppa.theta3_lab),
kinema_ppa.T3_lab/4,
color="maroon",
label=r"(p, p$\alpha$)",
lw=2)
# p
plt.plot(
np.rad2deg(kinema_ppa.theta4_lab),
kinema_ppa.T4_lab,
color="maroon",
ls='-.',
lw=2)

plt.legend()

plt.xlabel(r"$\theta_\mathrm{lab}$ (deg)")
plt.ylabel(r"$T$ (MeV/u)")
plt.xlim(0,90)
plt.ylim(0,800)

References